
PHYSICAL REVIEW E 67, 046310 ~2003!
Boundary conditions for probability density function transport equations in fluid mechanics

Luis Valiño and Juan Hierro
LITEC, Consejo Superior de Investigaciones Cientı´ficas, Marı́a de Luna 3, Zaragoza 50018, Spain

~Received 4 December 2002; published 29 April 2003!

The behavior of the probability density function~PDF! transport equation at the limits of the probability
space is studied from the point of view of fluid mechanics. Different boundary conditions are considered
depending on the nature of the variable considered~velocity, scalar, and position!. A study of the implications
of entrance and exit conditions is performed, showing that a new term should be added to the PDF transport
equation to preserve normalization in some nonstationary processes. In practice, this term is taken into account
naturally in particle methods. Finally, the existence of discontinuities at the limits is also investigated.
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INTRODUCTION

Methodologies based on the probability density functio
~PDF! @1# of species are becoming increasingly popular
calculating turbulent reacting flows, due to the closed ch
acter of the chemical contribution to the PDF transport eq
tion. After modeling, the open terms in its transport equati
a Monte Carlo procedure is applied to numerically pred
the PDF evolution@2#.

The problem of the boundaries in stochastic processes
been considered in different books@3–5#, mostly for the
Fokker-Planck equation. For fluid mechanics related pr
lems, there have been some works@6,7# that partially ad-
dresses this topic. In Pope’s derivation, the case for a n
bounded magnitude was studied. As boundary condition
an important issue in solving differential equations in flu
mechanics, a more comprehensive study has been carrie
in this paper.

The Lagrangian frame will be considered as it offers m
possible situations~the position is a stochastic variable!, al-
though the reasoning is equally valid for an Eulerian one

First, the boundary conditions in the case of a surfa
engulfing all the probability space is addressed. Sensible
tions are chosen depending on the variable and the spe
problem considered. Next, the case of entrance and exit
its is studied. A new term in the transport equation will ar
in the case of an imbalance between incoming and exi
particles. Finally, the implications in modeling are cons
ered and conclusions drawn. An appendix is added for
special case that Diracds are accumulated on the bounda

I. PDF TRANSPORT EQUATION FOR BOUNDARIES
COVERING THE WHOLE PROBABILITY SPACE

There are different methods to derive PDF transport eq
tions. Probably, the most popular is the one introduced
Lundgren@1#, which is based on Dirac’sds algebra. Another
method that comes from a functional formulation was dev
oped by Dopazo and O’Brien@8#. We prefer here to use th
method introduced by Pope@2#, because the effect of th
boundaries of the probabilistic space appears more explic

In this section, we are going to focus on the general s
ations that commonly arise in fluid flows. Notice that a
though the procedure is used for a PDF of a Lagrang
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quantity ~nonconditional to the initial state, although th
general case is added later!, the reasoning is equally valid fo
an Eulerian magnitude.

Consider a test function~differentiable with continuous
derivative in the domain! Q[Q@c1(t)#, wherec1(t) repre-
sents a whole set of Lagrangian variables, possibly includ
chemical species, position, velocity, etc. The evolution of
average, including all variables, is next calculated,

d

dt
^Q&5

d

dtEV
Q~f!Pc1~f;t !df

5E
s
Q

dfa
s

dt
na

s Pc1ds1E
V
Q

dPc1

dt
df. ~1!

The first term on the right-hand side of the previous eq
tion, which has been considered explicitly~at difference with
previous works!, is a consequence of the evolution with tim
of the limits f s of the PDF. These limits form a surfaces
that boundsV, the accessible region in the probabilist
space. It has outward unit vectorns.

We are considering thats covers all the accessible value
in the probabilistic space, so no particles are allowed to cr
this boundary. The situation of an infinite domain has be
studied by Pope@2#. In this paper, thes is not necessarily a
the infinite.

On the other hand, as taking averages and derivat
commute,

d

dt
^Q&5 K d

dt
QL 5E

V
K d

dt
QUfL Pc1df

5E
V
K ]Q

]ca
1

dca
1

dt UfL Pc1df

5E
V

]Q

]fa
K dca

1

dt UfL Pc1df, ~2!

where the second equality comes from a well-known P
property regarding conditional averages@2#, the third one is a
direct application of the chain rule, and the last one com
©2003 The American Physical Society10-1
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from the fact thatQ derivatives are uniquely functions ofc1,
so they come out of the conditional average as functi
of f.

Equation~2! is next integrated by parts. Using the dive
gence theorem to pass from a volume to a surface integ

d

dt
^Q&5E

s
QK dca

1

dt
UfsL na

s Pc1ds

2E
V
Q

]

]fa
S K dca

1

dt
UfL Pc1D df. ~3!

Now, equalizing the integrals in the last terms in Eqs.~1! and
~3!, grouping volume and surface integrals, the followi
equation is obtained:

E
V
QFdPc1

dt
1

]

]fa
S K dca

1

dt
UfL Pc1D Gdf

1E
s
QS dfa

s

dt
na

s Pc12K dca
1

dt
UfsL na

s Pc1D ds50.

~4!

Next, it is going to be assumed thatPc1 has no Diracd
kind of singularities, which could convert volume integra
into surface integrals. That means that in situations lik
scalar binary mixing (0,1) problem, regions with the e
tremal values of the scalar 1 or 0 are not to be encounte
with a noninfinitesimal measure. These singularities o
arise in the limit of infinite Reynolds number, infinitely fa
chemical reactions@7# or infinitely compressible fluid. For
the sake of completeness, this special case is included in
Appendix.

With the previous assumption aboutPc1 and taking into
consideration that the smooth functionQ is arbitrary, the
volume integrand and the surface integrand should be s
rately equal to zero. So, finally, the following equations a
obtained:

dPc1

dt
1

]

]fa
S K dca

1

dt
UfL Pc1D 50, ~5!

j a
s na

s [K dca
1

dt
UfsL na

s Pc12
dfa

s

dt
na

s Pc150, ~6!

where the definition of the probability currentj is included.
Equation~5! is the well-known result that describes th

evolution of the PDF in the domain encircled by the surfa
s in terms of the conditional averages of the temporal deri
tives of its variables.

Equation ~6! arises from the fact that we are explicit
considering that surface, and gives the rule for the evolu
of s in terms of the PDF and the same conditional avera
evaluated on the surface. This surface engulfs the wh
probability space as it is implicitly assumed when writing t
first equality in Eq.~1!. Equation~6! guarantees that no flu
of particles crossess, so s will keep containing the whole
probability space in the future.
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Notice that there are no fluctuations ofdca
1/dt about its

conditional mean~except for, at most, a measure nil se!,
since a positive value~when projecting to the normaln) of
this quantity would violate boundedness. To understand
restriction, it is useful to write the following expression o
the net flux of probability between two regionsV2 andV1 as
a function of two-time probability density functions@3#:

lim
Dt→0

1

DtEV1

df1E
V2

df2@P~f1 ;t1Dt,f2 ;t !

2P~f2 ;t1Dt,f1 ;t !#5E
s12

ds ja
s12na

s12, ~7!

where P(f1 ;t1Dt,f2 ;t) is the probability density of the
event

$c1~ t !5f2 and c1~ t1Dt !5f1%,

s12 is the surface separating both regions~for simplicity, as-
sumed constant!, and the normalns12 points fromV2 to V1.
In Eq. ~7!, it is also assumed, as in the rest of this secti
that there are no Diracd contributions.

In the present situation, as there are no particles cros
the surfaces[s12, both two-point probabilities are zero (V2
is our probabilistic space regionV). That means that
P(f1 ;t1Dt,f2 ;t)50 for any point inV[V2, andf1 rep-
resenting any point outsideV. In particular, in the event of a
particle very close tos, that probability is also zero, which
implies that it should have itsdca

1/dt ‘‘randomness’’ dimin-
ished in order not to cross the surface. In the limit, ons, the
conditional variance ofdca

1/dt should be zero. Obviously, a
there are no particles outsideV2, the other PDFP(f2 ;t
1Dt,f1 ;t) is zero too.

It is noticed that this is a consequence of the forbidd
crossing restriction, which is, in a fluid mechanics applic
tion, a physical constraint of some type. For example, ifc1 is
the fluid particle position, a wall which prevents that cros
ing would be the boundarys. In the following section, the
noncrossing restriction is removed and consequences
rived. Also notice that in the case ofs at infinite, as long as
^Q(dca

1/dt)& exists, the modulus of the integrand of Eq.~4!
should be null@2#.

There are two essential ways of satisfying the condit
expressed by Eq.~6!. The first one is to keeps ‘‘far away’’
enough, as to have null probability of having particles on
surface; that isPc1(fs)50. The movement of the point
that constitute the surface is irrelevant@as long asPc1(fs)
50 is guaranteed#. This case could be appropriate in a sit
ation wherec1 is a velocity field whose values are know
not to reach certain limits. The second one is allowing pro
ability density of having particles on the surface, but keep
the probability current at any point of the boundarys, j a

s na
s ,

null. This is appropriate, for example, for the (0,1) bina
mixing problem~finite Reynolds number!. 0 and 1 form the
initial boundary of the probability space. In this case, it
possible either to keep the boundaries fixed~as after the ini-
tial state, the probability of having the extreme values will
0-2
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BOUNDARY CONDITIONS FOR PROBABILITY DENSITY . . . PHYSICAL REVIEW E67, 046310 ~2003!
nil! or moves at the same~or smaller! rate as the conditiona
average. Movings at the same rate as the conditional avera
at all times means that

dfa
s

dt
na

s 5K dca
1

dt
UfsL na

s . ~8!

This way, if s(f)50 is initially the minimum surface sur
rounding the whole of the accessible probabilistic space
would remain this way for all times.

As the movements offs parallel to s are irrelevant in
order to define the surface, there aren21 degrees of free-
dom in defining its evolution in Eq.~8!. Arbitrarily, and for
convenience, the simple choice

dfa
s

dt
5K dca

1

dt
UfsL ~9!

is taken. Equation~9! determines a natural evolution of th
PDF boundaries. It shows that the PDF limits can be cho
to evolve in a natural way following the same rules as
notional particles representing the PDF.

The choice of this particular boundary is also appropri
in situations when special care in the application of the d
vation rules~the chain rule or integration by parts! is needed.
These rules demand continuous derivatives for the PDF
the interior domain of the function. It is not clear that th
PDF of a bounded scalar, as a chemical species, does
have a sudden drop in its limiting value. If this is so, t
derivative would be discontinuous~although both left and
right derivatives exist!. The previous deduction would b
still valid as the left derivative exists on the bound, but
would not be valid a deduction that keeps the original lim
fixed ~of moving with inappropriate rate!, so the point with
the sudden drop would be interior.

Going back to Eq.~4!, any allowable evolution of the
boundary surface implies that the second term in the rig
hand side vanishes, so this equation can be simplified
follows:

dPc1

dt
52

]

]fa
S K dca

1

dt
UfL Pc1D . ~10!

This is the well-known result that provides the evolution ru
for a PDF transport equation from the conditional avera
of temporal derivatives of its variables in physical space.

Finally, a consideration about conditioning on consta
quantities. Consider an additional set of variables in the P
which are constant in time. We use the notation with sub
dex ‘‘zero’’ for this extra set. If the PDFPc1c

0
1 is decom-

posed asPc1uc
0
1Pc

0
1, direct substitution into Eq.~10!, and

taking into account that any average or PDF of the cons
variables does not change with time, it is trivially obtaine
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dPc1uc
0
1

dt
52

]

]fa
S K dca

1

dt
Uf,f0L Pc1uc

0
1D . ~11!

Equation~11! was first obtained by Pope in Ref.@2# using
Lundgren’s methodology. Notice that a similar result for t
Fokker-Planck equation is shown by Gardiner@3#.

By the application of the same idea to the evolution
the moving PDF limits, it is also trivial

dfa
s

dt
5K dca

1

dt
Ufs,f0

sL . ~12!

II. PDF TRANSPORT EQUATION FOR BOUNDARIES NOT
COVERING THE WHOLE PROBABILITY SPACE

The mathematical development in the preceding sec
does not provide for situations with flux of probabilit
through the boundaries. That was necessary in order to
serve the normalization of the PDF. However, it is possible
have situations, where there is a flux of particles through
boundaries, which implies a flux of probability leading,
principle, to an improperly normalized PDF. This is the ca
for example, when the stochastic variable is the position
in a nontransient situation, more fluid particles leave th
enter the domain per unit time. The apparent contradict
lies in the fact that the PDF, that is actually simulated in su
a case is the PDF of the position conditional on having
values inside the domain. For that reason, the formula
derived in this section is also appropriate for the case that
net probability current is nil on each point of the limitin
surfaces, but particles can cross the boundary, because of
existence of particles outside our probabilistic domain.
this situation, even if the conditional mean ofdca

1/dt is zero,
it may have a variance, as long asP(f1 ;t1Dt,f2 ;t)
5P(f2 ;t1Dt,f1 ;t) in Eq. ~7!.

The proper way of obtaining the transport equation
such PDFs is to consider first the equation of the PDF o
all the space, and then to apply the relationship that ex
between them. This is done next.

ConsiderV8 the domain of the probabilistic space, we a
interested in. This region is encircled by a surfaces8. For
example, if we are thinking ofc15x1 for a turbulent jet,s8
could be formed by the entry, exit, and suitable lateral lim
We considerV8 contained inside the whole probabilist
spaceV, which is in its turn embraced by a surfaces. If s8
shares some part withs, the nonflux conditions explained in
the preceding section would apply to this part, so for simp
fying the analysis, this situation will not be considere
Equation~10! would be then fulfilled inV8 and also ins8.
Then it is possible to integrate that equation, multiplied b
test functionQ satisfying the same properties as the one
the Sec. I:

E
V8

QFdPc1

dt
1

]

]fa
S K dca

1

dt
UfL Pc1D Gdf50, ~13!

whereV8 at the bottom of the integral sign express that t
integration is performed in that volume.
0-3
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L. VALIÑ O AND J. HIERRO PHYSICAL REVIEW E67, 046310 ~2003!
Now Pc1 is substituted to obtain the transport equation
Pc1uV8 , the PDF conditional on the values ofc1 being inV8.
This is done by the existing following relationship betwe
both PDFs:

Pc1uV85
Pc1

:
, ~14!

where

:5E
V8

Pc1df ~15!

guarantees the normalization ofPc1uV8 . The result of this
substitution is

E
V8

QFdPc1uV8
dt

:1Pc1uV8:̇1:
]

]fa
S K dca

1

dt
UfL Pc1uV8D Gdf

50. ~16!

Being Q a general enough test function and by the sa
arguments as in the preceding section, the following diff
ential form equivalent to Eq.~10! is obtained:

dPc1uV8
dt

1Pc1uV8

:̇

:
1

]

]fa
S K dca

1

dt
UfL Pc1uV8D 50.

~17!

The first and third terms in Eq.~17! appear also in Eq.~10!,
and have the same meaning. The second one is the co
quence of the flux of probability through the boundaries a
should be interpreted as a renormalization of the PDF
fact, ~minus! : time derivative:̇ is the net flux of probabil-
ity of Pc1 throughs8, Js8, as it is readily shown from taking
the time derivative of Eq.~15!, replacing the resulting PDF
time derivative by means of Eq.~10! and using the same
mathematics as in Eq.~1!:

:̇5E
s8
S dfa

s8

dt
na

s8Pc12K dca
1

dt
Ufs8L na

s8Pc1D dfs8

52E
s8

j a
s8na

s8dfs852Js8. ~18!

Another way of looking at this renormalization, is by e
pressing the PDF in terms of Diracd functions, as it is done
in Monte Carlo PDF methods:

Pc1uV85
1

N (
n51

N

d@f2c1
uV8
n

~ t !#. ~19!

If now N is allowed to change in time and the value of t
particlesc1 kept constant, the following transport equation
obtained:

dPc1uV8
dt

52
Ṅ

N2 (
n51

N

d@f2c1
uV8
n

~ t !#52
Ṅ

N
Pc1uV8 ,

~20!
04631
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whereN is big enough and the temporal step is small enou
as to allow the notation abuseṄ.

It is convenient to express the flux in Eq.~17! in terms of
conditional PDF. This is done by applying Eq.~14! to Eq.
~18!, obtaining

:̇

:
5E

s8
S dfa

s8

dt
na

s8Pc1uV82K dca
1

dt
Ufs8L na

s8Pc1uV8D dfs8

52E
s8

j a
s8

uV8na
s8dfs852JuV8

s8 ~21!

in obvious notation.
With this result, the final form of the transport equatio

for the conditional PDF is

dPc1uV8
dt

2JuV8
s8 Pc1uV81

]

]fa
S K dca

1

dt
UfL Pc1uV8D 50,

~22!

with the boundary conditions given byj uV8
s8

• ns8 the outgoing
current of probability normal to each point ofs8.

When the net flux is null, the second term disappears
no renormalization is required. This situation happens,
explained, at the beginning of this section, when the pr
ability density that is transported by entering particles co
pensates the one removed by exiting ones. But in trans
situations, there is a contribution, which proportionally i
creases or decreasesPc1uV8 , depending on the outward o

inward character of the net flux of probabilityJuV8
s8 . The

proper normalization ofPc1uV8 is always guaranteed.

III. CONSEQUENCES IN THE NUMERICAL
IMPLEMENTATION OF PDF METHODS

Monte Carlo methods, used to numerically solve the P
transport equation, represent that PDF by a set of stocha
particles. The evolution of these particles should be in suc
way that their one point PDF of the considered magnitude
close enough~ideally identical! to that of the real flow. But
each stochastic particle does not have to behave as a
particle. In fact, the length and time scales used for the
merical algorithms in particle methods are much bigger th
those required by direct numerical simulations. In gene
their evolution is represented by all kind of Markovian pr
cesses, including nondifferentiable, as Ornstein-Uhlenbe
and even noncontinuous evolutions, as jump processes.
current of probability should include obviously the contrib
tion of all these kind of stochastic processes.

In this section, the consequences of the previous resul
the application of PDF methods to turbulent flows are st
ied. It will be seen that these consequences are in prac
taken into account naturally in particle methods. Nevert
less, it is enlightening to justify these practices, understa
ing and taking advantage of the close relationship betw
particle and PDF evolutions; particularly, in the case o
probability current crossing the boundaries of the probabi
tic domain.
0-4
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BOUNDARY CONDITIONS FOR PROBABILITY DENSITY . . . PHYSICAL REVIEW E67, 046310 ~2003!
The proper way of applying boundary conditions in PD
methods is by studyingj sns for the PDF expressed in term
of the real fluid particles. For reasonable choices of the P
boundary limits, this quantity should be deduced in terms
the boundary conditions of the transport equation of the m
nitude studied. Then, the same quantity should have its v
reproduced by the modeling stochastic particles. That me
that first the boundary conditions of the real field~assuming
they are coming from the Navier-Stokes equations! are con-
sidered. From these, proper boundary conditions for the P
of that real field are deduced. And finally, these ones will
the guide for establishing the boundary conditions of
PDF of the modeled field. It is reminded that the aim of PD
modeling is that the PDF of the modeled and real field are
closed as possible. Examples are next given.

~1! No crossing through the boundary allowed.As real
fluid particles are not allowed to cross the boundary in t
case, the particles representing the PDF cannot cross
boundary either, whatever the stochastic process is chos
model their behavior. The specific way of fulfilling this con
dition depends on the physics of the magnitude being so
and, ultimately, on the modeling chosen for the stocha
process to represent this physics.

In the case of real fields with nonbounded magnitudes
the velocity, all the possible choices are expressed, in p
tice, by nonrestrictions in the values thatc1 can reach. That
is to say, the velocity values that a particle can reach du
a stochastic process are not restricted in any way.

In the case of a real bounded magnitude, as a scalar m
fraction, the stochastic processes used to model the
should avoid that particles cross the limiting values, as r
particles do. From a practical point of view, some rule
derived to numerically avoid this crossing. As mentioned
Sec. I, this approach is used in binary mixing problems
scalars. In fact, many mixing models guarantee bounded
by construction.

~2! Crossing through the boundary allowed.The only
magnitude, of those that appear in a flow, which can reas
ably be affected by this kind of boundary condition is t
position. In this case, the current of probability through t
entry and/or exiting boundarys8 should be given. In view of
Eq. ~6!, this is the conditional velocity ats8. This require-
ment is fulfilled by knowing the velocity and number o
particles that enter and leave the domain. In transient si
tions, it is also necessary to implement the renormaliza
term in Eq.~17!. This is done by reevaluatingN, counting the
particles remaining in the domain in each time step as i
immediate from Eqs.~19! and ~20!. In fact, in practical
implementation of particle methods, the mass density fu
tion F is used, which is defined as the total mass in
considered volume times the~density weighted! Lagrangian
PDF. It is immediate to prove when taking the time deriv
tive of F, that the term coming from the variation of the tot
mass cancels with the renormalization term, shown in
~20!, so the same equation is obtained forF regardless of the
volume considered. In any case, from the previous analy
it is clear that the~density weighted! Lagrangian PDF to be
used in the definition ofF should be conditional to the par
ticles being inside the domainV8.
04631
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Eulerian frame

Although the results shown for the Lagrangian frame
equally valid in the Eulerian one, there are some spec
considerations that affect the boundary conditions of the P
in the Eulerian frame. Given the introduction of numeric
methods that use Monte Carlo fields instead of particles@9#,
it is convenient to point them out.

The fundamental difference between the Eulerian and
grangian frames, from the mathematical point of view, is
different role that positionx plays. In the Lagrangian frame
x is a variable in the probabilistic sense, while in the Eu
rian one,x is a variable in the ordinary sense. As a cons
quence, boundary conditions related withx should be treated
in the ordinary function sense. For example, stochastic fie
representing temperature should be consistent with
boundary condition of the PDF, as an ordinary function
the position, on the wall. Let’s say the PDF of temperatu
on the wall is given to be a Gaussian. Then the stocha
fields will have Gaussian distributed values on the wa
Other Dirichlet, Neumann, or mixed boundary conditio
should be similarly applied.

Notice that the meaning of thed/dt operator in Eqs.~10!
and ~22! depends on the character of the frame of refere
used to represent the PDF. In a Lagrangian frame, i
equivalent to]/]t, with the conditional mean velocity as
flux in the probabilistic space. In an Eulerian frame of ref
ence,d/dt has the usual meaning of (]/]t)1ui(]/]xi), with
no random variables associated to position.

IV. CONCLUSIONS

The behavior of the PDF transport equation at the lim
of the probability space has been studied, considering
variables that usually appear in fluid mechanics. In all cas
the important quantity to be given at the boundary is
current of probability. Different boundary conditions are co
templated, depending on the nature of the variables con
ered, velocity, scalars, and position. In the case of unboun
magnitudes, as the velocity, the boundary is at the infin
~case already studied by Pope@2#!. In the case of bounded
magnitudes, as mass fractions, there are two theoretic
possible cases: a fix boundary in the limit of nonaccess
values or a boundary that moves with the ‘‘velocity’’ cond
tional on the fluid particles being on that boundary. Fina
for the position of the fluid particles, it is shown that th
actual PDF studied, is the PDF of the position conditional
the particle being confined in the spatial domain conside
in the problem. The existence of a new term is proved
order to keep the PDF normalized in some transient sit
tions.

Although much of these results are implicitly taken in
account in particle methods, it is enlightening to explicit
justify these practices. Notice that the close relationship
tween particle and PDF evolutions allows the full unde
standing of special situations like the case of a probabi
current crossing the boundaries of the probabilistic doma
0-5
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L. VALIÑ O AND J. HIERRO PHYSICAL REVIEW E67, 046310 ~2003!
For the sake of completeness, the limiting cases, w
there are discontinuities at the limits, have been also inv
tigated and shown in the Appendix.

ACKNOWLEDGMENTS

Luis Valiño wants to thank the Spanish Ministry of Sc
ence and Technology for its support to this work throu
Project Nos. PB97-1507 and BFM/2001-3320, the Arag
Regional Government through Project No. P049/2001,
the European Commission through Project Nos. HPRN-
1999-00041 and G14RD-CT-2000-00402.

APPENDIX

In this appendix, the PDF is allowed to have possi
singularities on the boundaries in the form of Diracd con-
tributions. As mentioned above, these singularities only a
in the limit of infinite Reynolds number or in the limit o
infinitely fast chemical reactions~or in other more unusua
limits, as in the case of a infinitely compressible flow
infinite Mach number!. Kuznetsov and Sabelnikov@7# stud-
ied external intermittence in single scalar PDFs with t
kind of singularity. They consider the PDF of a single sca
through a turbulent mixing layer, including the upperc
51) and down (c50) nonturbulent regions.

If the Dirac d singularity arose in the inner domain,
would be always possible to split it using the singularities
boundaries, although it is not certainly a common situation
turbulent reacting flows.

First, it is convenient to expressPc1 as a regular partPc1
r

plus the possible Diracd contribution at the boundary:

Pc15Pc1
r

1gds , ~A1!

whereg(f,t) indicates the weight of the Diracd contribu-
tion ds to the total PDF. It is defined as a functiongs(fs,t)
on the boundary and takes arbitrary values in the rest ofV.

More properly, the generalized functionds , usually called
‘‘simple layer’’ is a multidimensional extension of the Dira
d which transform volume integrals into surface integrals
the surfaces. In the case of a spherical surface and in sph
cal coordinates,ds5d(r 2r s) and it is known as the radia
Dirac d function. Notice thatgs>0 cannot be arbitrarily big
as the normalizing condition*VPc1(f;t)df51 should be
preserved.

Kuznetsov and Sabelnikov follow a different approach
the one-dimensional case; the discontinuity is fixed and t
multiply Pc1

r by a generalized function that takes the value
insides and 0 outside, and integrate in an infinite domain

Now the procedure used in Sec. I is repeated here.
contribution of the regular part of the PDF is given by E
~4!, replacingPc1 by Pc1

r . The contribution of the disconti
nuity is next deduced. Considering again the test functionQ,
with the same properties as in Sec. I, the analogous to Eq~1!
is
04631
n
s-

n
d
-

e

e

s
r

s
n

n
i-

r
y

e
.

d

dtEV
Q~f!g~f!dsdf

5
1 d

dtEs
Q~f s!gs~f s!ds

5
2 d

dtEs
Q~c s!gs~c s!g1/2dc s

5
3 E

s
H d

dt
@Q~c s!gs~c s!#

1Q~c s!gs~c s!g21/2
]

]c j S g1/2
dc s j

dt D
1Q~c s!gs~c s!

1

2g

dg

dt J g1/2dc s, ~A2!

where equality 1 comes from the definition ofds ; equality 2
reflects a coordinate change toc, with c j$ j 52, . . .N,% be-
ing generalized surface coordinates~denoted globally as
c s), c1 being the normal-to-the surface coordinate, andg
the determinant of the metric tensor (g1/2 is the Jacobian!;
and equality 3 is the Reynolds transport theorem for s
faces. See, for example, the book by Aris@10# for the math-
ematical details.

It has been applied a new convention for repeated indic
Latin go from 2 toN ~surface! and Greek from 1 toN .
Contravariant components used. Notice that the determin
of the metric tensorg is the same for surface and volum
coordinatesc, asg1a5d1a , which comes from the fact tha
the first coordinate is normal to the others and its corresp
dent vector has unity length. Different symbols should ha
used to express the different functional dependency ofQ and
gs on the new system coordinate, but they have been wri
the same in order to not overload the notation. The con
will be used to distinguish instead.

Notice thatca is the contravariant componenta in the c
coordinate system, which is not the actual scalara in the
original f system, although the same symbol has been u
as forQ andgs .

It is convenient to expand the time derivative ofQ in the
preceding equation, considering explicitly the contributi
on the normal coordinate:

E
s

d

dt
@Q~c s!gs~c s!#g1/2dc s

5E
s

d

dt
@Q~f s!gs~f s!#ds

5E
s
F]~Qgs!

]fa

dfa
s

dt
1Q

]gs

]t Gds

5E
s
F ]

]fa
S Q

dfa
s

dt
gsD 2Qgs

]

]fa
S dfa

s

dt D 1Q
]gs

]t Gds
0-6
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5
1 E

s
F ]

]ca S g1/2Q
dc sa

dt
gsD2Qgs

]

]ca S g1/2
dc sa

dt D
1Qg1/2

]gs

]t Gdc s, ~A3!

where equality 1 is a consequence of the expression of
divergence (1/g1/2)](g1/2

•a)/]ca and the surface elemen
g1/2dc s in the generalized coordinatesc. It is reminded that
Q only has a implicit dependence on time which is due to
surface movement. On the other sidegs , besides that im-
plicit dependence, does have an explicit one, which is sho
through the operator]/]t. It should be reminded that a
calculations are carried out in a Lagrangian frame of re
ence. In an Eulerian frame,gs would have an additiona
implicit dependence on time through the position in physi
space.

Now, it is convenient to show explicitly the contributio
of the coordinate normal to the surface (c1):

E
s
F ]

]ca S g1/2Q
dc sa

dt
gsD2Qgs

]

]ca S g1/2
dc sa

dt D Gdc s

5E
s
F ]Q

]c1
g1/2

dc s1

dt
gs2Qgs

]

]c j S g1/2
dc s j

dt D Gdc s,

~A4!

where the two terms in the normal direction have be
grouped together and thenc1 derivatives expanded
(]gs /]c150), and

E
s
F ]

]c j S g1/2Q
dc s j

dt
gsD Gdc s50

~the coordinate surface lines are closed, so the initial and
points of integration coincide! has been taken into accoun

Replacing Eq.~A4! into Eq. ~A3! and then Eq.~A3! into
Eq. ~A2!, the following expression analogous to Eq.~1! in
generalized coordinates is obtained:

d

dtEV
Q~f!g~f!dsdf5E

s

]Q

]c1

dc s1

dt
gsg

1/2dc s

1E
s
S gs

1

2g

dg

dt
1

]gs

]t DQg1/2dc s.

~A5!

On the other hand, the contribution of the nonregular p
analogous to Eq.~2! is
04631
he

e

n

r-

l

n

nd

t,

E
V

]Q

]fa
K dca

1

dt
UfL gdsdf

5E
s

]Q

]fa
K dca

1

dt
Uf sL gsds

5E
s

]

]fa
S QK dca

1

dt
Uf sL gsD ds

2E
s
Q

]

]fa
S K dca

1

dt
Uf sL gsD ds

5E
s

]

]ca S g1/2QK dca
1

dt
Uc sL gsD dc s

2E
s
Q

]

]ca S g1/2K dca
1

dt
Uc sL gsD dc s, ~A6!

where the same mathematical considerations as in Eq.~A3!
have been taken into account. As in Eq.~A3!, the contribu-
tion of the coordinate normal to the surface (c1) in Eq. ~A6!
is shown explicitly,

E
V

]Q

]fa
K dca

1

dt
UfL gdsdf

5E
s

]Q

]c1
g1/2K dc11

dt
UcL gsdc s

2E
s
Q

]

]c j S g1/2K dcj 1

dt
UcL gsDdc s. ~A7!

After this algebra, all the contributions are written dow
altogether. For this, Eqs.~A5! and ~A7! are equalized, in-
cluding the not-written contribution of the regular part@Eq.
~4! for Pc1

r in surface coordinates#. The result is :

E
V
QFdPc1

r

dt
1g21/2

]

]ca S g1/2K dc1a

dt UcL Pc1
r D Gg1/2dc

1E
s
QFgs

1

2g

dg

dt
1

]gs

]t
1g21/2

]

]c j

3S g1/2K dcj 1

dt Uc sL gsD1
dc1

dt
Pc1

r

2 K dc11

dt Uc 2
s L Pc1

r Gg1/2dc s1E
s

]Q

]c1 S dc s1

dt

2 K dc11

dt Uc sL Dgsg
1/2dc s50, ~A8!

wherec 2
s indicates that the conditional average is actua

the limit as the boundary is approached. Due to the existe
0-7
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of the singularity, the conditional temporal derivative has
discontinuity at the boundary, and this limit is the prop
value to be taken.

Taking into consideration that the smooth functionQ is
arbitrary, the following equalities are obtained:

dPc1
r

dt
1g21/2

]

]ca S g1/2K dc1a

dt UcL Pc1
r D50, ~A9!

]gs

]t
1g21/2

]

]c j S g1/2K dcj 1

dt Uc sL gsD
1S dc1

dt
2 K dc11

dt Uc 2
s L D Pc1

r
1gs

1

2g

dg

dt
50,

~A10!

dcs1

dt
gs2 K dc11

dt Uc sL gs50. ~A11!

The meaning of these equations is clear. Equation~A9!
shows the known evolution of a regular PDF inside the
mainV: once in the internal region, everything is smooth a
the equation of evolution has nothing special. It correspo
to Eq. ~5! ~regular PDF case!. Equation~A10! expresses the
evolution of gs ~the d weight! on the surfaces due to the
movement of the fluid particles in the probabilistic spa
along the surfaces: there is a redistribution on the surface
this weight analogous to a PDF evolution. But there is a
an exchange withPc1

r due to the probability current ex
pressed by the term inPc1

r of the equation. If this probability
ic

04631
a
r

-
d
s

o

current goes inside the domainV, it increases the value o
Pc1

r and decreasesgs , and the reverse in the opposite cas
Using Eqs.~A9! and ~A10! in (d/dt)*VPc1

r dV shows the
global balance betweenPc1

r andgS , which is a consequenc
of the normalization of the total PDF. As surface coordina
are used, and the surface can evolve in time, the corresp
ing evolution of the metrics~g! appear. Although a fluid,
infinitely compressible, could also provide a good examp
the following simple picture can help to understand t
meaning of this equation: a ‘‘paperfly’’ is the surface with
lot of flies on it ~Dirac d). These flies can walk on the~mov-
ing! flypaper, sogS evolves in time. Flies are trapped on i
surface~increase ofgS at Pc1 expenses!, although some of
them could escape the flypaper~decrease ofgS at Pc1 ben-
efit!. The paperfly is allowed to be wrapped due to heat
some other reason~evolution of g). Finally, Eq. ~A11! ex-
presses the fact that no probability current may crosss, in
order to keep proper normalization of the whole PDFPc1.
Notice that this term affect onlygs , as the singularity stays
at the boundary and no jump processes exist for the fl
particles to go directly from inside to outside without passi
through the boundary. Going back to the ‘‘flypaper’’ simp
picture, the flies cannot cross the flypaper. For complet
the picture, Eq.~A9! would represent the flies evolution i
the air.

As a final remark, it is clear that the transformation
coordinates used in this appendix makes full sense in
case of spatial positions. For other quantities, the conditio
values like ^dc11/dtuc s& appearing in the previous equa
tions are better to be interpreted as ligatures in the rate
evolution of combined magnitudes.
i.
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