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Boundary conditions for probability density function transport equations in fluid mechanics
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The behavior of the probability density functigRDF transport equation at the limits of the probability
space is studied from the point of view of fluid mechanics. Different boundary conditions are considered
depending on the nature of the variable considévetbcity, scalar, and positionA study of the implications
of entrance and exit conditions is performed, showing that a new term should be added to the PDF transport
equation to preserve normalization in some nonstationary processes. In practice, this term is taken into account
naturally in particle methods. Finally, the existence of discontinuities at the limits is also investigated.
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INTRODUCTION qguantity (nonconditional to the initial state, although this
general case is added Igtethe reasoning is equally valid for
Methodologies based on the probability density functionsan Eulerian magnitude.

(PDP [1] of species are becoming increasingly popular for Consider a test functiotdifferentiable with continuous
calculating turbulent reacting flows, due to the closed charderivative in the domainQ=Q[c" (t)], wherec™ (t) repre-
acter of the chemical contribution to the PDF transport equasents a whole set of Lagrangian variables, possibly including
tion. After modeling, the open terms in its transport equationchemical species, position, velocity, etc. The evolution of its
a Monte Carlo procedure is applied to numerically predictaverage, including all variables, is next calculated,
the PDF evolutior2].

The problem of the boundaries in stochastic processes has d
been considered in different book8-5], mostly for the a@):af Q(P)P+(p;t)dop
Fokker-Planck equation. For fluid mechanics related prob- v
lems, there have been some woflés7] that partially ad- des dpP...
dresses this topic. In Pope’s derivation, the case for a non- = f Q dta nSPcrds+ fVQd—quﬁ. 1
S

bounded magnitude was studied. As boundary conditions is

an important issue in solving differential equations in fluid

mechanics, a more comprehensive study has been carried oriie first term on the right-hand side of the previous equa-

in this paper. tion, which has been considered explicitgt difference with
The Lagrangian frame will be considered as it offers moreprevious worky, is a consequence of the evolution with time

possible situationgthe position is a stochastic variapl@l-  of the limits ¢° of the PDF. These limits form a surfase

though the reasoning is equally valid for an Eulerian one. that boundsV, the accessible region in the probabilistic
First, the boundary conditions in the case of a surfacgpace. It has outward unit vectof.

engulfing all the probability space is addressed. Sensible op- We are considering thatcovers all the accessible values

tions are chosen depending on the variable and the specifig the probabilistic space, so no particles are allowed to cross

problem considered. Next, the case of entrance and exit limthis boundary. The situation of an infinite domain has been

its is studied. A new term in the transport equation will arisestudied by Popg2]. In this paper, thes is not necessarily at

in the case of an imbalance between incoming and exitinghe infinite.

particles. Finally, the implications in modeling are consid- On the other hand, as taking averages and derivatives

ered and conclusions drawn. An appendix is added for theommute,

special case that Diraés are accumulated on the boundary.

d d
. PDF TRANSPORT EQUATION FOR BOUNDARIES Q= <&Q> = fv<aQ ¢> Pcrde
COVERING THE WHOLE PROBABILITY SPACE

There are different methods to derive PDF transport equa- _J JQ dc, P .d
tions. Probably, the most popular is the one introduced by "\ get dt ¢|Pcrde
Lundgren[1], which is based on Dirac'ss algebra. Another “
method that comes from a functional formulation was devel- 9Q dc:[
oped by Dopazo and O'Brief8]. We prefer here to use the =J a6, \ dt ¢ ) Pcrde, 2
method introduced by Popl2], because the effect of the VOPa

boundaries of the probabilistic space appears more explicitly.

In this section, we are going to focus on the general situwhere the second equality comes from a well-known PDF
ations that commonly arise in fluid flows. Notice that al- property regarding conditional averag@$ the third one is a
though the procedure is used for a PDF of a Lagrangiamirect application of the chain rule, and the last one comes
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from the fact thaQ derivatives are uniquely functions of Notice that there are no fluctuations @€ /dt about its
so they come out of the conditional average as functiongonditional mean(except for, at most, a measure nil )set
of ¢. since a positive valuéwvhen projecting to the normat) of

Equation(2) is next integrated by parts. Using the diver- this quantity would violate boundedness. To understand this
gence theorem to pass from a volume to a surface integralrestriction, it is useful to write the following expression of
the net flux of probability between two regiols andV; as

d dCZ a function of two-time probability density functiof3]:
E<Q>:LQ< It ¢S>nZPC+ds P y y 18]
1
d dc, lim Aty d‘f’ljv depo[ P(¢py;t+ AL, ¢ys1)
- Q—|{—=+ +|dée. At—
vafM'Ja i ¢ )P |dep ®) t-0 1 2
Now, equalizing the integrals in the last terms in Eg3.and —P(dit+AL 1) ]= L ds 2, (7
12

(3), grouping volume and surface integrals, the following
equation is obtained: where P( by ;t+At, b,:t) is the probability density of the

J dPe+ 9 ( dea| Vo ]y event
VQ_dt +(97)a gt | @/ Per | |de
de;, dc;
+LQ(W%PC+‘< dt
4) In Eq. (7), it is also assumed, as in the rest of this section,
that there are no Diraé contributions.

Next, it is going to be assumed thBt+ has no Diracd In the present situation, as there are no particles crossing
kind of singularities, which could convert volume integrals the surfaces=s;,, both two-point probabilities are zer¥/{
into surface integrals. That means that in situations like as our probabilistic space regioV). That means that
scalar binary mixing (0,1) problem, regions with the ex-P(¢;;t+At, ¢,;t)=0 for any point inV=V,, and ¢, rep-
tremal values of the scalar 1 or 0 are not to be encounteregsenting any point outsidé. In particular, in the event of a
with a noninfinitesimal measure. These singularities onlyparticle very close te, that probability is also zero, which
arise in the limit of infinite Reynolds number, infinitely fast implies that it should have itdc; /dt “randomness” dimin-
chemical reaction$7] or infinitely compressible fluid. For ished in order not to cross the surface. In the limit,spthe
the sake of completeness, this special case is included in thwnditional variance ofic; /dt should be zero. Obviously, as

{c'=d, and c"(t+At)=gby},

¢s> nzpc+) ds=0. S1, is the surface separating both regi_c(fur simplicity, as-
sumed constajitand the normah®:2 points fromV, to V;.

Appendix. there are no particles outsidé,, the other PDFP(¢,;t
With the previous assumption aboBt+ and taking into  +At, ¢ ;t) is zero too.
consideration that the smooth functi@p is arbitrary, the It is noticed that this is a consequence of the forbidden

volume integrand and the surface integrand should be separossing restriction, which is, in a fluid mechanics applica-
rately equal to zero. So, finally, the following equations aretion, a physical constraint of some type. For example; ifs
obtained: the fluid particle position, a wall which prevents that cross-
N ing would be the boundarg. In the following section, the
ch++ i( dc, p.l=0 ) noncrossing restriction is removed and consequences de-
dt  dp,\\ dt S A rived. Also notice that in the case efat infinite, as long as
(Q(dc;/dt)) exists, the modulus of the integrand of Ed)
. [dcg AU dos should be nul[2].
JaNa=\ 4y | " | NaPer = g NaPer =0, (6) There are two essential ways of satisfying the condition
expressed by Eq6). The first one is to keep “far away”
where the definition of the probability currepts included. ~ €nough, as to have null probability of having particles on the
Equation(5) is the well-known result that describes the surface; that isP.-(#%)=0. The movement of the points
evolution of the PDF in the domain encircled by the surfacethat constitute the surface is irrelevdas long asP +(¢°)
sin terms of the conditional averages of the temporal deriva=0 is guaranteeld This case could be appropriate in a situ-
tives of its variables. ation wherec™ is a velocity field whose values are known
Equation (6) arises from the fact that we are explicitly not to reach certain limits. The second one is allowing prob-
considering that surface, and gives the rule for the evolutiobility density of having particles on the surface, but keeping
of sin terms of the PDF and the same conditional averagethe probability current at any point of the boundary$n?,
evaluated on the surface. This surface engulfs the wholaull. This is appropriate, for example, for the (0,1) binary
probability space as it is implicitly assumed when writing themixing problem(finite Reynolds numbér0 and 1 form the
first equality in Eq.(1). Equation(6) guarantees that no flux initial boundary of the probability space. In this case, it is
of particles crosses, so s will keep containing the whole possible either to keep the boundaries fixad after the ini-
probability space in the future. tial state, the probability of having the extreme values will be
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nil) or moves at the saméor smallej rate as the conditional dPg+ e+ P de*
average. Moving at the same rate as the conditional average -0 _ __< <_“ o, ¢O> pc+|c+) ] (12)
at all times means that dt dpe\ |\ dt 0

Equation(11) was first obtained by Pope in Rd2] using
Lundgren’s methodology. Notice that a similar result for the
¢S> n. (8) Fokker-Planck equation is shown by Gardifat.
By the application of the same idea to the evolution for
the moving PDF limits, it is also trivial

dg; . |dc;
at e\ Tdt

This way, if s(¢) =0 is initially the minimum surface sur-

s +
rounding the whole of the accessible probabilistic space, it d¢a: de, & P (12)
would remain this way for all times. dt dt o
As the movements o#p® parallel tos are irrelevant in
order to define the surface, there are 1 degrees of free- || ppr TRANSPORT EQUATION FOR BOUNDARIES NOT
dom in defining its evolution in Eq8). Arbitrarily, and for COVERING THE WHOLE PROBABILITY SPACE

convenience, the simple choice
The mathematical development in the preceding section
does not provide for situations with flux of probability
S> ) through the boundaries. That was necessary in order to pre-
serve the normalization of the PDF. However, it is possible to
have situations, where there is a flux of particles through the
boundaries, which implies a flux of probability leading, in
is taken. Equatiof9) determines a natural evolution of the principle, to an improperly normalized PDF. This is the case,
PDF boundaries. It shows that the PDF limits can be chosefor example, when the stochastic variable is the position and
to evolve in a natural way following the same rules as thein a nontransient situation, more fluid particles leave than
notional particles representing the PDF. enter the domain per unit time. The apparent contradiction
The choice of this particular boundary is also appropriatdies in the fact that the PDF, that is actually simulated in such
in situations when special care in the application of the deria case is the PDF of the position conditional on having the
vation rules(the chain rule or integration by paris needed. values inside the domain. For that reason, the formulation
These rules demand continuous derivatives for the PDF idlerived in this section is also appropriate for the case that the
the interior domain of the function. It is not clear that the net probability current is nil on each point of the limiting
PDF of a bounded scalar, as a chemical species, does nefirfaces, but particles can cross the boundary, because of the
have a sudden drop in its limiting value. If this is so, theexistence of particles outside our probabilistic domain. In
derivative would be discontinuou&lthough both left and  this situation, even if the conditional meandxd /dt is zero,
right derivatives exigt The previous deduction would be jt may have a variance, as long @(¢;;t+At,¢,;t)
still valid as the left derivative exists on the bound, but it:P(¢2;t+At,¢l;t) in Eq. (7).
would not be valid a deduction that keeps the original limits  The proper way of obtaining the transport equation of
fixed (of moving with inappropriate rajgso the point with  sych PDFs is to consider first the equation of the PDF over
the sudden drop would be interior. all the space, and then to apply the relationship that exists
Going back to Eq.4), any allowable evolution of the petween them. This is done next.
boundary surface implies that the second term in the right- Considerv’ the domain of the probabilistic space, we are
hand side vanishes, so this equation can be simplified ggterested in. This region is encircled by a surfate For
follows: example, if we are thinking of " =x* for a turbulent jets’
could be formed by the entry, exit, and suitable lateral limits.
We considerV’ contained inside the whole probabilistic
¢> Pc+) (100  SpaceV, which is in .its turn embraced b_y_ a surfase_lf s’ _
shares some part with the nonflux conditions explained in
the preceding section would apply to this part, so for simpli-

. i , fying the analysis, this situation will not be considered.
This is the well-known result that provides the evolution rUIeEquation(lo) would be then fulfilled invV’ and also ins’ .

for a PDF transport equation from the conditional averagegye it is possible to integrate that equation, multiplied by a

of te_mporal der|va_t|ves _Of its variables n physmal SPace.  tast functionQ satisfying the same properties as the one in
Finally, a consideration about conditioning on constanty,o gac |-

guantities. Consider an additional set of variables in the PDF

which are constant in time. We use the notation with subin- dP.. 9 de*

dex “zero” for this extra set. If the PDRP¢:¢s is decom- f Q d—t°+£( <d_ta

posed asPc+|c; ch, direct substitution into Eq(10), and “

taking into account that any average or PDF of the constanthereV' at the bottom of the integral sign express that the

variables does not change with time, it is trivially obtained integration is performed in that volume.

de¢; |dc,
dt |\ dt

B dt

dPC+ J dC;—
At d,

¢> PC+) }d(b: 0, (13
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Now P.-+ is substituted to obtain the transport equation ofwhereN is big enough and the temporal step is small enough

c+\v' , the PDF conditional on the values©f being inV'. as to allow the notation abudé
This is done by the existing following relationship between |t is convenient to express the flux in E@.7) in terms of
both PDFs: conditional PDF. This is done by applying Eq.4) to Eq.
(18), obtaining
P i (14)
+ v/ = y )
ct| N N f dd) ' dCZ ) ps'p 4a®
where g_ o dt n ct|v/ dt d) n, cr|v! ¢
_ .g/ s’ " s’
N:J Pc-de (15 “Lla\v'”add’s = (D)
V!
guarantees the normalization 8+ y,. The result of this N obvious notation. _
substitution is With this result, the final form of the transport equation
for the conditional PDF is
ch+|V dC;r
Q N+Pc+|V'x+R ¢ I:)(:ﬂV’ de dPe+yr ' J dCJr
' dt d) dt TV 8 p p ~0
WA c*\V’+ ¢ | Py | =0,
dt A, \ \ dt
=0. (16 (22)

Being Q a general enough test function and by the same
arguments as in the preceding section, the following differ-"
ential form equivalent to Eq.10) is obtained:

with the boundary conditions given b&, - n%’ the outgoing
current of probability normal to each point sf.
When the net flux is null, the second term disappears and
no renormalization is required. This situation happens, as
> Pc*’lV’) =0

explained, at the beginning of this section, when the prob-
ability density that is transported by entering particles com-
17 pensates the one removed by exiting ones. But in transient
The first and third terms in Eq17) appear also in Eq10), situations, there is a contribution, which proportionally in-
and have the same meaning. The second one is the consg&ases or decreaség: ., depending on the outward or
guence of the flux of probability through the boundaries andnward character of the net flux of probablll@f\,,. he
should be interpreted as a renormalization of the PDF. Irproper normalization oP.+ )y is always guaranteed.
fact, (minug XN time derivativeX is the net flux of probabil-
ity of P+ throughs’, J¥, asitis readily shown from taking [ll. CONSEQUENCES IN THE NUMERICAL
the time derivative of Eq(15), replacing the resulting PDF IMPLEMENTATION OF PDF METHODS
time derivative by means of Eq10) and using the same

dPCﬂV’ P N (9 dCZ
dt + C+‘V,§+r¢)a

mathematics as in Eql): Monte Carlo methods, used to numerically solve the PDF
transport equation, represent that PDF by a set of stochastic

_ d(bsr dct particles. The evolution of these particles should be in such a

R = f ( e nz’ pc+_< ad d¢S’ way that their one point PDF of the considered magnitudes is

| dt dt close enougffideally identical to that of the real flow. But

each stochastic particle does not have to behave as a fluid

=1 i3 nde;S': -J%. (18 particle. In fact, the length and time scales used for the nu-
s’ merical algorithms in particle methods are much bigger than

Another way of looking at this renormalization, is by ex- those required by direct numerical simulations. In general,

pressing the PDF in terms of Diratfunctions, as it is done their evo_lution 'is repres.ented py all kind of Markovian pro-
in Monte Carlo PDF methods: cesses, including nondifferentiable, as Ornstein-Uhlenbeck,

and even noncontinuous evolutions, as jump processes. The
current of probability should include obviously the contribu-
Pervr = E Sl p—c |V,( )] (190  tion of all these kind of stochastic processes.

In this section, the consequences of the previous results in
the application of PDF methods to turbulent flows are stud-
ied. It will be seen that these consequences are in practice
taken into account naturally in particle methods. Neverthe-

¢S,> ni PC+

If now N is allowed to change in time and the value of the
particlesc* kept constant, the following transport equation is

obtained: less, it is enlightening to justify these practices, understand-
dp NI N ing and taking advantage of the close relationship between
vt ° 2 S p—ct,(1)]= o particle and PDF evolutions; particularly, in the case of a

dt N? n= Ivr Perive probability current crossing the boundaries of the probabilis-

(20 tic domain.
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The proper way of applying boundary conditions in PDF Eulerian frame
methods is by studying’n® for the PDF expressed in terms
of the real fluid particles. For reasonable choices of the PDF Although the results shown for the Lagrangian frame are
boundary limits, this quantity should be deduced in terms ofqually valid in the Eulerian one, there are some specific
the boundary conditions of the transport equation of the magconsiderations that affect the boundary conditions of the PDF
nitude studied. Then, the same quantity should have its valu@ the Eulerian frame. Given the introduction of numerical
reproduced by the modeling stochastic particles. That mearf§ethods that use Monte Carlo fields instead of partifSgs
that first the boundary conditions of the real fi¢kssuming it is convenient to point them out.
they are coming from the Navier-Stokes equatjcar® con- The fundamental difference between the Eulerian and La-
sidered. From these, proper boundary conditions for the PDBrangian frames, from the mathematical point of view, is the
of that real field are deduced. And finally, these ones will bedifferent role that positiox plays. In the Lagrangian frame,
the guide for establishing the boundary conditions of thex is a variable in the probabilistic sense, while in the Eule-
PDF of the modeled field. It is reminded that the aim of PDFrjan one,x is a variable in the ordinary sense. As a conse-
modeling is that the PDF of the modeled and real field are aguence, boundary conditions related witshould be treated
closed as possible. Examples are next given. in the ordinary function sense. For example, stochastic fields

(1) No crossing through the boundary allowefis real _representing temperature should be consistent with the
fluid particles are not allowed to cross the boundary in th's‘ooundary condition of the PDF, as an ordinary function of
I?ﬁe position, on the wall. Let's say the PDF of temperature
& the wall is given to be a Gaussian. Then the stochastic

o ! ) i fields will have Gaussian distributed values on the wall.
dition depends on the physics of the magnitude being solve ther Dirichlet, Neumann, or mixed boundary conditions
and, ultimately, on the modeling chosen for the stochastic S o] y
process to represent this physics. ShOUId. be similarly appl!ed. .

In the case of real fields with nonbounded magnitudes, as 'Otice that the meaning of th#/dt operator in Eqs(10)
the velocity, all the possible choices are expressed, in pra@nd(22) depends on the character of the frame of reference
tice, by nonrestrictions in the values thet can reach. That USed to represent the PDF. In a Lagrangian frame, it is
is to say, the velocity values that a particle can reach due tgduivalent tod/dt, with the conditional mean velocity as a
a stochastic process are not restricted in any way. flux in the prObabiliStiC space. In an Eulerian frame of refer-

In the case of a real bounded magnitude, as a scalar maggce,d/dt has the usual meaning of/(gt) + u;(d/9x;), with
fraction, the stochastic processes used to model the PDFo random variables associated to position.
should avoid that particles cross the limiting values, as real
particles do. From a practical point of view, some rule is
derived to numerically avoid this crossing. As mentioned in
Sec. |, this approach is used in binary mixing problems for ) . o
scalars. In fact, many mixing models guarantee boundedness The behavior of the PDF transport equation at the limits
by construction. of the probability space has been studied, considering the

(2) Crossing through the boundary allowe@he only  variables that usually appear in fluid mechanics. In all cases,
magnitude, of those that appear in a flow, which can reasorthe important quantity to be given at the boundary is the
ably be affected by this kind of boundary condition is the current of probability. Different boundary conditions are con-
position. In this case, the current of probability through thetemplated, depending on the nature of the variables consid-
entry and/or exiting boundary should be given. In view of ered, velocity, scalars, and position. In the case of unbounded
Eqg. (6), this is the conditional velocity a’. This require- magnitudes, as the velocity, the boundary is at the infinity
ment is fulfilled by knowing the velocity and number of (case already studied by Pop#]). In the case of bounded
particles that enter and leave the domain. In transient situanagnitudes, as mass fractions, there are two theoretically
tions, it is also necessary to implement the renormalizatiompossible cases: a fix boundary in the limit of nonaccessible
term in Eq.(17). This is done by reevaluating, counting the  values or a boundary that moves with the “velocity” condi-
particles remaining in the domain in each time step as it igional on the fluid particles being on that boundary. Finally,
immediate from Eqgs(19) and (20). In fact, in practical for the position of the fluid particles, it is shown that the
implementation of particle methods, the mass density funcactual PDF studied, is the PDF of the position conditional on
tion F is used, which is defined as the total mass in thethe particle being confined in the spatial domain considered
considered volume times theensity weightedLagrangian in the problem. The existence of a new term is proved in
PDF. It is immediate to prove when taking the time deriva-order to keep the PDF normalized in some transient situa-
tive of F, that the term coming from the variation of the total tions.
mass cancels with the renormalization term, shown in Eq. Although much of these results are implicitly taken into
(20), so the same equation is obtained foregardless of the account in particle methods, it is enlightening to explicitly
volume considered. In any case, from the previous analysigustify these practices. Notice that the close relationship be-
it is clear that thgdensity weightedLagrangian PDF to be tween particle and PDF evolutions allows the full under-
used in the definition ofF should be conditional to the par- standing of special situations like the case of a probability
ticles being inside the domahm’. current crossing the boundaries of the probabilistic domain.

boundary either, whatever the stochastic process is chosen
model their behavior. The specific way of fulfilling this con-

IV. CONCLUSIONS
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For the sake of completeness, the limiting cases, when d
there are discontinuities at the limits, have been also inves- ﬁf Q(d) y(¢)5d
tigated and shown in the Appendix. v

1d
= s S)ds
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APPENDIX +Q(#%) 75(#°9 1/2&_W(91/2T)
In this appendix, the PDF is allowed to have possible g
singularities on the boundaries in the form of Dirdcon- s s i 99( 1p0 s
tributions. As mentioned above, these singularities only arise QM) sl 2g dt gy, (A2)

in the limit of infinite Reynolds number or in the limit of

infinitely fast chemical reactionéor in other more unusual
limits, as in the case of a infinitely compressible flow or
infinite Mach number Kuznetsov and Sabelnikd7] stud-
ied external intermittence in single scalar PDFs with this
kind of singularity. They consider the PDF of a single scalar
through a turbulent mixing layer, including the upper (

=1) and down ¢=0) nonturbulent regions.

If the Dirac 6 singularity arose in the inner domain, it
would be always possible to split it using the singularities as
boundaries, although it is not certainly a common situation ir]_

turbulent reacting flows.

First, it is convenient to expre$%.+ as a regular parl’c’rC+

where equality 1 comes from the definition &f; equality 2
reflects a coordinate change #9 with ¢;{j=2,...N,} be-

ing generalized surface coordinatédenoted globally as
%), ' being the normal-to-the surface coordinate, and
the determinant of the metric tensay'f® is the Jacobian
and equality 3 is the Reynolds transport theorem for sur-
faces. See, for example, the book by Arg] for the math-
ematical details.

It has been applied a new convention for repeated indices:
atin go from 2 toN (surface and Greek from 1 toN .
Contravariant components used. Notice that the determinant
of the metric tensog is the same for surface and volume

plus the possible Diraé contribution at the boundary: coordinatesy, asg;,= ;,, Which comes from the fact that

Pe=PlL+y3s,

where y(¢,t) indicates the weight of the Diraé contribu-

the first coordinate is normal to the others and its correspon-
dent vector has unity length. Different symbols should have
used to express the different functional dependendy ahd

vs on the new system coordinate, but they have been written
the same in order to not overload the notation. The context

(A1)

tion & to the total PDF. It is defined as a functig( ¢°,t) will be used to distinguish instead.

on the boundary and takes arbitrary values in the rest. of
More properly, the generalized functidy, usually called
“simple layer” is a multidimensional extension of the Dirac
6 which transform volume integrals into surface integrals on
the surfaces. In the case of a spherical surface and in spheri-
cal coordinatesgs= 5(r —r®) and it is known as the radial
Dirac & function. Notice thaty;=0 cannot be arbitrarily big

Notice thatc” is the contravariant componeatin the
coordinate system, which is not the actual scatain the
original ¢ system, although the same symbol has been used,
as forQ and ;.

It is convenient to expand the time derivative@fin the
preceding equation, considering explicitly the contribution
on the normal coordinate:

as the normalizing conditioriyP.+(¢;t)d¢p=1 should be

preserved.

Kuznetsov and Sabelnikov follow a different approach for

d
| Sirewovwong iay:

the one-dimensional case; the discontinuity is fixed and they q
. r . .
.mulltlply P.+ by a ggnerallzgd functloq that 'Fak.e's the valge 1 _ fd_[Q((/,s) y(h)1ds
insides and 0 outside, and integrate in an infinite domain. sdt
Now the procedure used in Sec. | is repeated here. The s
contribution of the regular part of the PDF is given by Eq.  _ f [8(st) dé, aVs}dS
S

(4), replacingP.+ by P_. . The contribution of the disconti- g, dt 3

nuity is next deduced. Considering again the test fundafipn 4o 4o
with the same properties as in Sec. |, the analogous tél1Eq. _ f J (Qﬁy —Qy i( b % ds
is s b, dt ' Sdg, | dt ot
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1 dws:z 9 dlpsa j < >
_ 1 112 5d
Js ( 2Q ) st&gba(g dt ) v, yosde
+Q 1275 75 dlﬁs (A3) :JS <_‘¢S> sts
gEACE R
where equality 1 is a consequence of the expression of the s0Pq 7s)d
divergence (*?)d(g¥? a)/oy* and the surface element dct
gY2d4S in the generalized coordinates It is reminded that —JQL(< Co ¢s>y )ds
Q only has a implicit dependence on time which is due to the s 0, s

surface movement. On the other siglg, besides that im-

plicit dependence, does have an explicit one, which is shown _ f ( 1’2Q<
through the operatop/dt. It should be reminded that all B P
calculations are carried out in a Lagrangian frame of refer-

oo

ence. In an Eulerian frameys would have an additional s M
implicit dependence on time through the position in physical —JQ 2| 97\ gr [#°) vs|diS, (AG)
space. s 0y
Now, it is convenient to show explicitly the contribution ) ) ) )
of the coordinate normal to the surfacg'y: where the same mathematical considerations as in(AR).

have been taken into account. As in E43), the contribu-
tion of the coordinate normal to the surfaag'} in Eq. (A6)

f{ ( l,sz¢5a ) (glf?dl’bsa)ldzps is shown explicitly,
dt
e +
j 6Q<dca ¢> 5.
S\ AqAr Y
f = gl’zdwﬂv —Qys ‘(gllzdw ) des®, v I%a) o S
ayt dt ay! 1+
_f (9Q 1/2, de l/, dlps
(A4) s a(/jlg dt 73
where the two terms in the normal direction have been _ 9 12 de'” durs. (A7
1 - Q— | ys|dg®. (A7)
grouped together and theny™ derivatives expanded Y dt

(dysldy*r=0), and

After this algebra, all the contributions are written down
altogether. For this, EqSA5) and (A7) are equalized, in-

f ( ) dyys=0 cluding the not-written contribution of the regular pfiEg.
Y dt Vs (4) for PL+ in surface coordinatg¢sThe result is :
i A L. d Pr+ J dC+a
(the coordinate surface lines are closed, so the initial and end J Q ——+g 12 (91/2 & p"+) gY2dy
points of integration coincidehas been taken into account. v dt ap“ dt ¢
Replacing Eq(A4) into Eq.(A3) and then Eq(A3) into
Eqg. (A2), the following expression analogous to H@) in 1 dg+ 075 _1p 9
generalized coordinates is obtained: Q Ys2g dt a
dclt dyt
d iQ dyt X 9”2<—dt ¢S> AR
Gl e psge- | Sy
\% S (9¢ d 1+ sl
1dg g B T PR o
g 75 1/ s dt N alp dt
dC1+
(A5) —< it ¢5> ) 79 y°=0, (A8)

On the other hand, the contribution of the nonregular partywhere ¢° indicates that the conditional average is actually
analogous to Eq2) is the limit as the boundary is approached. Due to the existence
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of the singularity, the conditional temporal derivative has acurrent goes inside the domain it increases the value of
discontinuity at the boundary, and this limit is the properPrC+ and decreaseg;, and the reverse in the opposite case.
value to be taken. . o Using Egs.(A9) and (A10) in (d/dt)fyPL.dV shows the
Takmg into consllderatlon.t.hat the smo_oth .funct@nls global balance betweemg andys, which is a consequence
arbitrary, the following equalities are obtained: of the normalization of the total PDF. As surface coordinates
dp’, g dete are used, and the surface can evolve in time, the correspond-
_°+g—1/2_(gll2<_ ,/,> p" ):0, (A9) ing evolution of the metricfg) appear. Although a fluid,
dt e dt infinitely compressible, could also provide a good example,
the following simple picture can help to understand the
s> ) meaning of this equation: a “paperfly” is the surface with a
P s lot of flies on it(Dirac 8). These flies can walk on tHenov-
ing) flypaper, soys evolves in time. Flies are trapped on its

ct

%+g—1lzi Y2 dc”
at Ay dt

dyt  [dctt . ] 1 dg surface(increase ofyg at P.+ expenses although some of
(W_< at ¢—> Pet Ys2g a o them could escape the flypapelecrease ofys at P+ ben-
efit). The paperfly is allowed to be wrapped due to heat or
(A10)  some other reasofevolution ofg). Finally, Eq.(A1l) ex-
< 1+ presses the fact that no probability current may crgss
diy _<dc_ z/;s> y.=0 (A11) order to keep proper normalization of the whole PBE-.
dt ' dt s Notice that this term affect only, as the singularity stays

) ) ) at the boundary and no jump processes exist for the fluid
The meaning of these equations is clear. Equalidf)  aricles to go directly from inside to outside without passing
sho_ws the kn.own gvolutlon of a regular PDF .|n3|de the dOThrough the boundary. Going back to the “flypaper” simple
mainV: once in the internal region, everything is smooth andyicyyre, the flies cannot cross the flypaper. For completing
the equation of evolution has nothing special. It correspondg, o picture, Eq(A9) would represent the flies evolution in
to Eq. (5) (regular PDF cage Equation(A10) expresses the pa air.

evolution of y; (the 6 weighy on the surfaces due to the As a final remark, it is clear that the transformation of
movement of the fluid particles in the probabilistic spacecqordinates used in this appendix makes full sense in the
along the surface: there is a redistribution on the surface of ;55e of spatial positions. For other quantities, the conditional
this weight analogous to a PDF evolution. But there is alsQ,5),es like (dct*/dt| ) appearing in the previous equa-
an exchange wittP;, due to the probability current ex- tions are better to be interpreted as ligatures in the rate of
pressed by the term iFlrC+ of the equation. If this probability evolution of combined magnitudes.
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